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Abstract The present paper extends our previous discussion of paper I on “Over-
all Counts”, still focusing on enumerations of substitutional isomers with restrictive
positioning of ligands. But now, we address the counts of such isomers with a spec-
ified subsymmetry of the symmetry of the parent skeleton. Constrained analogs of
Pólya’s cycle index still appear, but now we introduce more powerful technical tools
to include subsymmetry-specified generalizations of the cycle index. This involves
differential-operator approach for analytically treating newly derived hybrids of the
the generalized cycle index and suitable F-polynomials. As a simple illustration of
the general mathematical exposition, a specific problems are solved and some tasks
for possible further consideration are also stated, where again the Maple symbolic
manipulation package proves useful.

Keywords Enumeration · Substitutional isomers · Restrictive substitution ·
Symmetry-restrictive · F-polynomials

1 Introduction

Herein, we refer to our general introduction to the subject which was given in the
previous part I [1] and now focus on our present work.
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2 Preliminaries

This section is devoted to an exposition of mathematical notions and tools adopting
ideas and notations of the Part I (“Overall Counts”).

2.1 Symmetry-specific polynomials of graphs

This part of our text is important for our hybridization and utilization of analogies and
relations between Pólya’s cycle indices [2–4] and the (family) polynomials of graphs
[5–8]. For an arbitrary graph G and a family F of (its) subgraphs, we develop certain
hybrid polynomials which possess the features of both types of generating functions,
to enumerate vertex covers C (of a graph G with subgraphs f ∈ F) for different
subsymmetries of embedding of subgraphs f ∈ C in G. This program of attention to
subsymmetries follows [9–11], and utilizes some additional terminology.

Let a finite permutation group A (|A| = p) act on a finite set X (|X | = n). By
definition, an orbit Xi (A) (1 ≤ i ≤ t), induced by a permutation group A on X is
an equivalence class of objects x ∈ X , such that: x, y ∈ Xi (A) ⇐⇒ there exists
g ∈ A such that gx = y (where gx denotes the result of action of permutation g on
x). Denote [3] the set

A\\X := {X1(A), X2(A), . . . , Xt (A)} (1)

of all orbits Xi (A) induced by A acting on X . [As an aside, note that in the more
general case of semigroups, the definition of an orbit induced by a semigroup cannot
always fully obey our condition, a more general definition is possible [10]. Namely,
in the case of a semigroup S, an orbit Xi = Xi (S) (1 ≤ i ≤ t) is a minimal S-closed
subset, of X , such that ∀h ∈ S, ∀x ∈ Xi and ∀y ∈ X \ Xi we have hx ∈ Xi and
hy ∈ X \ Xi . Note that the condition of minimality cannot be relaxed, for otherwise,
it would not generally distinguish single orbits from unions thereof.]

A subgroup H ⊆ A was called closed and periodic by Rota and Smith [12], or auto-
morphic synonymously in [11], iff H is the maximum among all subgroups inducing
one and the same set of orbits (Ĥ\\X). The closed nature of such a subgroup H will
be indicated by a “hat” ( ˆ ) over the subgroup name, thusly Ĥ . Such an Ĥ contains all
the coorbital subgroups, and Ĥ is also termed the closure of all its coorbital subgroups
H .

For each subgroup H ⊆ A and an element g ∈ A, the transformation H g =
gHg−1 = H ′ gives a subgroup in A conjugate to H . The notion of subgroup
conjugacy permits an economy in practical combinatorial applications of (symme-
try) groups, since every pair of conjugated subgroups always produces essentially
the same combinatorial action. In particular, for an isomer conformation with sym-
metry group H and x ∈ Xi (H), there is another conformation (gx) for the same
isomer now having symmetry group H g , and one may consider the combinato-
rial actions only of one representative Ĥ of each conjugacy class Con(H) of sub-
groups. Then, there always exists a one-to-one correspondence between orbit sets
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H\\X = {X1(H), X2(H), . . . , Xs(H)} and H g\\X = {X1(H g), X2(H g), . . . ,

Xs(H g)} such that |Xi (H)| = |Xi (H g)| (1 ≤ i ≤ s; s ≥ t).
Now, as a case in point, let F(G; x, w) be the F-polynomial of a graph G(X; E)

with the automorphism group Aut G= AutM ∼= A and let subgroups Ĥ1, Ĥ2, . . . , Ĥr

be representatives of all conjugacy classes of closed subgroups in A. Then, we can
make the following ‘symmetry splitting’ of the polynomial F(G; x, w):

F(G; x, w) =
r∑

j=1

F(G; Ĥ j ; x, w), (2)

where F(G; Ĥ j ; x, w) is the restriction of the F-polynomial for just F-covers C with
the automorphism group Aut C for which (A∩AutC) ∈ Con(Ĥ j ). In other words, (2)
displays the F-covers C of a graph G in accordance with their induced subsymmetries
in G.

We call the polynomial F(G; Ĥ j ; x, w) the symmetry-specific, or Ĥ j -specific poly-
nomial of G. E. g., the symmetry-specific matching polynomial M(G; Ĥ j ; x, w)

can be a remarkable analytical tool for keeping and processing combinatorial infor-
mation concerning substitutional isomers involving both unidentate and bidentate
ligands.

To deal with symmetry-specific polynomials F(G; Ĥ j ; x, w), one first computes
auxiliary polynomials P(G; Ĥ j ; x, w) that enumerate all F-covers C for which Ĥ j ⊆
A ∩ AutC. This contrasts with F(G; Ĥ j ; x, w) for which Ĥ j = A ∩ AutC. In other
words, for F(G; Ĥ j ; x, w) substitutional patterns (i. e., F-covers C) have automor-
phism groups (isomorphic to) Ĥ j , whereas for P(G; Ĥ j ; x, w) the counted substitu-
tional patterns have symmetries with Ĥ j being a subgroup. These symmetry-restricted
polynomials P(G; Ĥ j ; x, w) can be calculated using either our original method [11]
detailed later here or Burnside’s table of marks [3,13]. The most part of all isomer
enumerations using the table of marks has been performed by Fujita [14], who pub-
lished several dozens of papers on this subject. Although the approach employed here
[11] is newer than Burnside’s and differs in form, all three have the same underlying
combinatorial background. Thence, one may choose what is deemed more conve-
nient.

Now, the intermediate polynomials P(G; Ĥ j ; x, w) are to be used to calculate the
target polynomials F(G; Ĥ j ; x, w). First, notice that the set H = {Ĥ1, Ĥ2, . . . , Ĥr }
of representatives of conjugacy classes of closed subgroups, in A, forms a poset (par-
tially ordered set) with a “zero” element Ĥ1 = {e} (where e is the identity) and a
“unit” Ĥr = A. The relevant partial order � is as follows: For two (not necessarily
distinct) subgroups Ĥi , Ĥ j ∈ H (1 ≤ i ≤ j ≤ r), Ĥi � Ĥ j iff (if and only if) there
is an Ĥ

′
j ∈ Con(Ĥ j ), such that Ĥi ⊆ Ĥ

′
j . If Ĥi � Ĥ j & Ĥ j � Ĥi , then Ĥi & Ĥ j are

isomorphic (Ĥi ∼= Ĥ j ). If Ĥi � Ĥ j & Ĥi � Ĥ j , then Ĥi ≺ Ĥ j .
To obtain the symmetry-specific polynomials from symmetry-reduced ones, the

(combinatorial Riemann) ζ -function and the Möbius μ-function of H. By definition,
the ζ -function of H is the function ζ : H × H → {0, 1} represented by the matrix
ζ = [ζi j

]n
i, j=1 with entries
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ζi j ≡ ζ(Ĥi , Ĥ j ) =
{

1, if Ĥi � Ĥ j (1 ≤ i ≤ j ≤ n);
0, otherwise.

(3)

The ζ -function nicely describes the hierarchy and subordination of all closed sub-
groups Ĥi ∈ H. The μ-function is represented in terms of the matrix inverse to ζ

[2,3,11]. There exist [15] purely combinatorial algorithms for obtaining μ from ζ .
For instance, consider the ζ -function of the poset H of closed subgroups of the sym-

metry group Td of a regular tetrahedron (see Wikipedia and Wolfram in the Internet for
more information). A regular tetrahedron has 12 rotational (or orientation-preserving)
symmetries, and a total of 24 symmetries including transformations that combine a
reflection and a rotation. The group of all symmetries is isomorphic to the symmetric
group S4 (of permutations of 4 objects), since there is exactly one such symmetry
operation for each permutation of the vertices of the tetrahedron. The set of orienta-
tion-preserving symmetries forms a group referred to as the alternating subgroup A4
of even permutations of S4. That the graph of the tetrahedron is isomorphic to the
complete graph K4 allows a determination of the number of closed subgroups of our
Td even before indentification of these subgroups. Namely, there exist 5 partitions of
the number four: 4 = 1+1+1+1; 4 = 1+1+2; 4 = 2+2; 4 = 3+1; 4 = 4. Here, we
readily see that the first and last closed subgroups are Ĥ1 = C1 and Ĥ5 = Td , the con-
jugacy classes of each containing only one subgroup (|Con(C1)| = |Con(Td)| = 1).
The remaining 3 subgroups are addressed using a (Td -)decorated cube. For this, we take
a cube and draw 6 diagonal lines, one to each of its 6 faces, such that any 2 lines drawn
on opposite faces are criss-crossed and each vertex of a cube is incident to either 0 or
3 diagonal lines, where each possibility (0 or 3) occurs 4 times. We thus obtain a tetra-
hedral-symmetry object. A second subgroup of Td is C2 (|C2| = 2; |Con(C2)| = 3),
comprised from the unity and a 2-fold rotation around the axis which passes through
the centers of opposite faces of our decorated cube. This rotation induces two 2-ele-
ment orbits on the set of vertices of the tetrahedron and corresponds to simultaneously
changing the orientation of two nonincident edges of the tetrahedron and thereby gives
the third partition 4 = 2 + 2. The subgroup C2 is not, however, closed, and we meet
the corresponding closed one among the subsequent subgroups. The next subgroup C

′
s

(|C ′
s | = 2; |Con(C

′
s)| = 3) corresponds to a mirror plane crossing in a diagonal direc-

tion 2 opposite faces of a cube. This induces two 1-element & one 2-element orbits
on the set of vertices of a tetrahedron and corresponds to changing the orientation
of exactly one edge of a tetrahedron; that is, we have the second mentioned partition
4 = 1 + 1 + 2. Here, Cs is itself a closed subgroup Ĥ2 (which is checkable as an easy
exercise). After this, there follows C3 (|C3| = 3; |Con(C3)| = 8) which is due to a
rotation axis of the third order passing along the longest diagonal of a cube, or through
one vertex and the center of the opposite face of a tetrahedron. This group yields the
fourth partition 4 = 1 + 3, but is not a closed subgroup. Then, as a group-theoretical
union of C2 and Cs , there arises C

′
2v (|C ′

2v| = 4; |Con(C
′
2v)| = 3); this is the desired

closed subgroup Ĥ3 which corresponds to the third partition 4 = 2 + 2 and induces
the same orbits as C2 above. The next subgroup C3v (|C3v| = 6; |Con(C3v)| = 4)

is the closed subgroup Ĥ4, which corresponds to the fourth partition of 4 (4 = 1 +
3) and induces the same orbits as its subgroup C3. The higher-ranked subgroups
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D2d (|D2d | = 8, |Con(D2d)| = 3) and T (|T | = 12; |Con(T )| = 1) induce only
one 4-element orbit corresponding to the fifth (trivial, identical) partition 4 = 4, for
which the group Td is itself the closed subgroup Ĥ5.

As a result of our detailed illustrative calculation, we have collected the needed
information for the construction of the poset H. We find 5 closed subgroups of Td ,
viz.: Ĥ1 = C1, Ĥ2 = C

′
s , Ĥ3 = C

′
2v , Ĥ4 = C3v , Ĥ5 = Td . For these subgroups,

note that Ĥ1 � Ĥ1, Ĥ2, Ĥ3, Ĥ4, Ĥ5; Ĥ2 � Ĥ2, Ĥ3, Ĥ4, Ĥ5; Ĥ3 � Ĥ3, Ĥ5; Ĥ4 �
Ĥ4, Ĥ5; Ĥ5 � Ĥ5.

The last conclusions about the order subordination of elements in this poset H
contain the necessary and sufficient information for calculating the ζ -function of the
poset H. Viz.:

ζ =

⎡

⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1

1 0 1
1 1

1

⎤

⎥⎥⎥⎥⎦
. (4)

The Möbius function of H is obtained through inversion of the matrix ζ :

μ = ζ−1 =

⎡

⎢⎢⎢⎢⎣

1 −1 0 0 0
1 −1 −1 1

1 0 −1
1 −1

1

⎤

⎥⎥⎥⎥⎦
. (5)

Now, the question about the interrelations between graph polynomials F(G; Ĥi ;
x, w) and P(G; Ĥi ; x, w) is easy to answer. Let F (res. P) be a column vector with
components Fi = F(G; Ĥi ; x, w) (res. Pi = P(G; Ĥi ; x, w)) (1 ≤ i ≤ r). Then, the
solution of our system of simultaneous linear equations (P = ζF) is

F = ζ−1P = μP. (6)

Making use of an earlier considered example (see (6) in Part I) as a case of the
F-polynomial, we can manually compute respective polynomials P(G; Ĥ1; x, w):

P(K4; Ĥ1; x, w) = x1x2x3x4 + x1x2w2 + x1x3w2 + x1x4w2 + x2x3w2 + x2x4w2

+x3x4w2 + 3w2
2;

P(K4; Ĥ2; x, w) = x1x2x3x4 + x1x2w2 + x1x3w2 + x1x4w2 + x2x3w2 + x2x4w2

+x3x4w2 + 3w2
2;

P(K4; Ĥ3; x, w) = x1x2x3x4 + x1x2w2 + x1x3w2 + x1x4w2 + x2x3w2 + x2x4w2

+x3x4w2 + 3w2
2;

P(K4; Ĥ4; x, w) = x1x2x3x4;
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P(K4; Ĥ5; x, w) = x1x2x3x4. (7)

From (7), it is seen that the minimum possible subsymmetry of matchings of a regular
tetrahedron corresponds to the symmetry subgroup C

′
2v . That is, a priori, the first two

components of the column vector F, on the L.H.S. of (6), are 0 (F1 = F2 = 0). But we
want to obtain a complete solution of the system (6), so that we substitute the R.H.S.’s
of expressions (7) for respective components Pj (1 ≤ j ≤ n) of the vector P in (6) to
give

F =

⎡

⎢⎢⎢⎢⎣

1 −1 0 0 0
1 −1 −1 1

1 0 −1
1 −1

1

⎤

⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎢⎣

P(K4; Ĥ1; x, w)

P(K4; Ĥ2; x, w)

P(K4; Ĥ3; x, w)

P(K4; Ĥ4; x, w)

P(K4; Ĥ5; x, w)

⎤

⎥⎥⎥⎥⎥⎦
(8)

=

⎡

⎢⎢⎢⎢⎢⎣

P(K4; Ĥ1; x, w) − P(K4; Ĥ2; x, w)

P(K4; Ĥ2; x, w) − P(K4; Ĥ3; x, w) − P(K4; Ĥ4; x, w) + P(K4; Ĥ5; x, w)

P(K4; Ĥ3; x, w) − P(K4; Ĥ5; x, w)

P(K4; Ĥ4; x, w) − P(K4; Ĥ5; x, w)

P(K4; Ĥ5; x, w)

⎤

⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎣

0
0
x1x2w2 + x1x3w2 + x1x4w2 + x2x3w2 + x2x4w2 + x3x4w2 + 3w2

2
0
x1x2x3x4

⎤

⎥⎥⎥⎥⎦
.

From (8), it finally follows that P(K4; Ĥ1; x, w) = P(K4; Ĥ2; x, w) = P(K4; Ĥ4;
x, w) = 0, P(K4; Ĥ1; x, w) = x1x2w2 + x1x3w2 + x1x4w2 + x2x3w2 + x2x4w2 +
x3x4w2 +3w2

2, and P(K4; Ĥ1; x, w) = x1x2x3x4, which completes our computation.
The sum of all thus obtained symmetry-specific polynomials F(K4; Ĥ j ; x, w) equals
the R.H.S. of (6) in our Part I.

The above example illustrates how the symmetry-specific polynomials are calcu-
lated through symmetry-reduced ones, but not yet how we can compute the latter
ones and, more so, symmetry-restricted polynomials which take into account only
symmetry-nonequivalent covers.

2.2 Using differential operators to calculate F-polynomials

The topic of differential operators applied to manipulations with graph polynomials
was already briefly discussed above (see (7) in Part I and [16–18]). However, in this
subsection the same form of differential operator earlier used in (7) of Part I is now
employed for modified purposes. Note that the differential operator in (7) of Part I
removed the vertex variables not associated with the components f of an F-cover C,
whereas in this subsection, we associate this same operator form to eliminate only
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variables that exactly pertain to the vertices of respective components f of C. Appar-
ently, from the standpoint of differentiation, there is no difference whatever between
the two cases. In other words, we use the following working interpretation of the
operator that represents a connected subgraph f ∈ F ;

D(f) := wf
∂s

∂x1∂x2 · · · ∂xs

≡ wf∂1∂2 · · · ∂s, xi ∈ V (f) (1 ≤ i ≤ s = |V (f)|; f ∈ F(G)), (9)

where wf is an arbitrary multiplicative weight independent of indeterminates xi , and
where we have introduced abbreviations ∂i ≡ ∂/∂xi .

Recall that the product D1 · D2 of two differential operators in n variables is defined
as

D1 · D2 = w1∂
β1
1 ∂

β2
2 · · · ∂βn

n · w2∂
γ1
1 ∂

γ2
2 · · · ∂γn

n = w1w2∂
β1+γ1
1 ∂

β2+γ2
2 · · · ∂βn+γn

n ,

(10)

where superscripts βi and γi (1 ≤ i ≤ n) are arbitrary nonnegative integers. The set
D of all such differential operators generates a commutative and associative algebra
D of weighted differential operators in many variables, with a zero 0̂ and unit 1̂, over
the field W of weight coefficients, such that

(i) under multiplication, D (without 0) forms a semigroup, with identity 1̂;
(ii) D (with 0) spans a vector space over W.

We say that D is generated by the n derivatives ∂
∂x1

, ∂
∂x1

, . . . , ∂
∂xn

and write
D = 〈∂1, ∂2, . . . , ∂n〉. This simply allows the possibility of addition and multipli-
cation of the differential operators (9) including 0̂ & 1̂, with weight coefficients from
W. Note that the operator 0̂ can in most cases be replaced by 0, but a similar substitu-
tion of 1 ∈ W for 1̂ cannot generally be done except for special cases with 1̂ standing to
the left of D, because for any differential operator D ∈ D we have 1D = D, whereas
or D1 = 0 (since the differentiation of a constant always gives 0). Just this fact was
not properly mentioned in [16–18], where correct final results were in some places
accompanied with an incorrect notation 1 instead of the needed 1̂. See an illustrative
example (15) later.

Following De Bruijn’s manipulations with Pólya’s cycle indices [6], differential
operators have been employed for derivation of F-polynomials [16–18], including the
even-subgraph polynomial Evn(G;w) for the family F of all Eulerian subgraphs, of
G, having all vertex degrees even [16]; the characteristic polynomial φ−(G; x); the
permanental polynomial φ+(G; x) (both for the family F of all edges and proper cycles
of G); and the matching polynomials α−(G; x) & α+(G; x) [17,18]. For Evn(G;w),
it was demonstrated [16] that

Evn(G;w) =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎣
∏

{i, j}∈E(G)
(i< j)

(
1̂ + w∂i∂ j

)
⎤

⎥⎥⎦
n∏

i=1

cosh(xi )

⎫
⎪⎪⎬

⎪⎪⎭

∣∣∣∣∣∣∣∣
xi =0 (1≤i≤n)

, (11)
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where the first product embraces all edges of G; and cosh(x) = (ex + e−x )/2 is the
hyperbolic cosine. As is well known, this yields the partition function of the Ising
problem. Though a general version Evn(G; x, w) of the even-subgraph polynomial
is the F-polynomial, its simplified form Evn(G;w) in one variable w, as in (11), is
merely the generating function of even subgraphs of a graph G, whose coefficient of
w j is just the number of j-edge even subgraphs of G. The general form also assures the
same enumeration if one employs, as components of the vector w, the indeterminates
w j (1 ≤ j ≤ m) of weights of respective components f ∈ F with exactly j edges.

Thus, the canonical form of an F-polynomial is not generally a linear function in all
its variables; however, it is always so in part—namely, in the variables xi (1 ≤ i ≤ n).
In mathematics, a polynomial is called a multiaffine polynomial if it is of degree
1 in each variable (say, xi ). The (partial) multiaffinity of the F-polynomials in the
xi (1 ≤ i ≤ n) plays a crucial role in our differential-operator method [17,18] for an
analytic generation of polynomials.

Rosenfeld and Gutman [17,18] obtained the following result (initially formulated
for the characteristic, permanental, and matching polynomials but holding true for all
F-polynomials):

Theorem 1 Let F(G) = {f1, f2, . . . , f|F |} be a family of connected subgraphs of a
graph G, with weights wf (f ∈ F) and associated differential operators D(f), defined
in (9). Then

F(G; x, w) =
⎡

⎣
∏

f∈F(G)

(
1̂ + wf D(f)

)
⎤

⎦
n∏

i=1

xi . (12)

Proof Apparently, to every ‘correct’ F-cover in (12), consisting of disjoint compo-
nents f, there corresponds the product of differential operators containing just the
first derivative with respect to each variable used and so contributes to the L.H.S. of
(12). On the R.H.S., every product forming an ‘incorrect’ F-cover must contain over-
lapping components f, with consequent derivatives of higher-than-first order. Since
∂s xi/∂xs

i = 0 for s ≥ 2, the ‘incorrect’ covers do not contribute, leaving only the
‘correct’, whence the proof is completed. ��

Now, we recollect our previous example (6) in Part I and try to reproduce the
same result using Theorem 2. Amongst all 24 = 16 differential operators in variables
x1, x2, x3, x4 which occur, only a subset correspond to ‘correct’ F-covers, Maple or
like computational program packages prove useful. As an example:

M(K4; x, w) =
[(

1̂ + w2∂1∂2

)
·
(

1̂ + w2∂1∂3

)
·
(

1̂ + w2∂1∂4

)
·

×
(

1̂ + w2∂2∂3

)
·
(

1̂ + w2∂2∂4

)
·
(

1̂ + w2∂3∂4

)] 4∏

i=1

xi

=
[
1̂ + w2∂3∂4 + w2∂2∂4 + w2∂2∂3 + w2∂1∂4 (13)
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+w2∂1∂3 + w2∂1∂2 + 3w2
2∂1∂2∂3∂4

] 4∏

i=1

xi = x1x2x3x4 + x1x2w2 + x1x3w2 + x1x4w2 + x2x3w2 + x2x4w2

+x3x4w2 + 3w2
2,

where the final result is indeed identical to the R.H.S. of (6) in Part I. Again note that
the unit 1̂ of the differential-operator ring D is not an “unnecessary pedantic notion”.
If 1 were substituted for 1̂ in (13), one would not obtain the same result; and even the
very associativity of multiplication of combined operators in parentheses would be
lost. For instance,

[(
1̂ + w2∂1∂2

) (
1̂ + w2∂3∂4

)]
x1x2x3x4 =

[
1̂ + w2∂1∂2 + w2∂3∂4 + w2

2∂1∂2∂3∂4

]

×x1x2x3x4 = x1x2x3x4 + x3x4w2 + x1x2w2 + w2
2,

since w2∂1∂21̂ = w2∂1∂2, whereas, if 1̂ is replaced by 1, then the final term x3x4w2
is missing, because w2∂1∂21 = 0. Further, we recommend exploitation of Maple.
Note that due to the associativity of the binary multiplicative operation (·), the result
displayed by (13) can also be obtained using a successful application of all operators
(1̂ + w2∂i∂ j ) (1 ≤ i, j ≤ n) first to

∏4
i=1 xi and, then, each time, to the precedent

(intermediate) result. Calculations with Maple give an automated procedure replacing
a successive manual one in (13):

maple;
f0 := x1 · x2 · x3 · x4;
f1 := f0 + di f f ( f0, x1, x2);
(where f0 is a function f0(x1, x2) in variablesx1 and x2)

f2 := f1 + di f f ( f1, x1, x3);
f3 := f2 + di f f ( f2, x1, x4);
f4 := f3 + di f f ( f3, x2, x3);
f5 := f4 + di f f ( f4, x2, x4);
f6 := f5 + di f f ( f5, x3, x4);
end;
M(K4; x, w) = f6.

A “trick” with a substitution for 1̂ appears in a modified version of Theorem 1:

Corollary 1.1 Let F(G) = {f1, f2, . . . , f|F |} be a family of connected subgraphs of a
graph G, with weights wf (f ∈ F) and associated differential operators D(f), defined
in (9). Besides, let ξ be an xi -independent (1 ≤ i ≤ n) variable. Then

F(G; x; w) =
⎧
⎨

⎩

⎡

⎣
∏

f∈F(G)

(
∂

∂ξ
+ wf D(f)

)⎤

⎦ eξ
n∏

i=1

xi

⎫
⎬

⎭ e−ξ
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=
⎧
⎨

⎩

⎡

⎣
∏

f∈F(G)

(
∂

∂ξ
+ wf D(f)

)⎤

⎦ eξ
n∏

i=1

xi

⎫
⎬

⎭

∣∣∣∣∣∣
ξ=0

, (14)

where the first product embraces all connected subgraphs f ∈ F(G).

Proof Evidently, for all nonnegative integers p, ∂ p

∂ξ p eξ = eξ , which proves the first

equality. The second follows from the fact that eξ
∣∣
ξ=0 = e0 = 1. This gives the

overall proof. ��
Corollary 1.1 does not involve 1̂, as such, and employs different methods of

representing the same operations, as now can be directly programmed for sym-
bolic computations. But from an analytical point of view, an elegant way to calcu-
late the F-polynomials uses differential operators in exponential functions ewf D =
1̂ +∑∞

n=1
1
n!w

n
f Dn . Then (see [17,18]):

Corollary 1.2 Let F = {f1, f2, . . . , f|F |} be a family of connected subgraphs of a
graph G, with weights wf (f ∈ F) and associated differential operators D(f), defined
in (9). Then

F(G; x; w) =
⎡

⎣exp

⎛

⎝
∑

f∈F(G)

wf D(f)

⎞

⎠

⎤

⎦
n∏

i=1

xi , (15)

where the summation ranges over all connected subgraphs f ∈ F.

Proof Obviously,
[
exp
(∑

f∈F(G) wf D(f)
)]

=
[∏

f∈F(G) exp (wf D(f))
]
. Since

[
exp (wf D(f))

]∏n
i=1 xi =

[
1̂ + wf D(f)

]∏n
i=1 xi , we have the proof. ��

Theorem 1 and Corollary 1.2 are of use in different ways:

(*) for the study of interrelations among different F-polynomials (which is also
one of the main tasks in Farrell’s program of investigation;

(**) for the calculation of a specific F-polynomial of one graph through that of
another graph;

(***) for derivations of recursion formulae for F-polynomials, and
(****) for identification of a family F of connected subgraphs f of a graph G using

the associated F-polynomial F(G; x, w), as is due to the invertibility of the

exponential operator
[
exp
(∑

f∈F(G) wf D(f)
)]

in the ring D.

Now, recall the set O(H) = H\\X = {X1(H), X2(H), . . . , Xs(H)} of orbits
induced by a finite (not necessarily closed) subgroup H ⊆ A on a nonempty finite set
X . To an orbit X j (H) = {x j1 , x j2 , . . . , x jp } (1 ≤ j ≤ s; p = p(H) = |X j (H)|),
associate the useful differential operator

D(X j (H)) := yp∂ j1∂ j2 · · · ∂ jp , (16)

where yp is a new weight-indeterminate indicating a vertex orbit of cardinality p.
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Also, the notion of orbits applies to other than vertices. Given an f ∈ F(G), an
(F-) orbit Xi (H) consists of f ∈ F(G) all of which are equivalent under H ⊆ AutG
and the set of such orbits is denoted FH = H\\F = {F1(H), F2(H), . . . , Ft (H)}.
We remind the reader that, throughout this paper, F(G) contains full isomorphism
classes of subgraphs f of G. Call an orbit Fk(H) ∈ FH (1 ≤ k ≤ t) a free orbit
whenever for each f ∈ Fk(H) the image gf of f under every permutation g ∈ H
either has a zero intersection with f or fixes all points of f (call it a nonfree orbit oth-
erwise). The weight wFk (H) (1 ≤ k ≤ t; H ⊆ A) of a free orbit Fk(H) includes the
product of the weights wf of all subgraphs f belonging to it; since these weights are
the same for all qk = |Fk(H)| symmetry-equivalent subgraphs f ∈ Fk(H), we have
wFk(H) = zrk (H)w

qk
f (H), where rk(H) = qk |V (f)|, or a total number of vertices, of X ,

covered by a free orbit Fk(H) of connected subgraphs f ∈ Fk(H) (the latter version can
also be applied to a nonfree orbit), and a new added, weight-indeterminate zu indicates
an orbit Fk(H) of connected subgraphs f ∈ FH covering exactly u = rk vertices of X .

Generalizing (9) and (16), we associate to an orbit Fk(H) (1 ≤ k ≤ t) the following
differential operator

D (Fk(H))

:=
{

zrk w
qk
f ∂1∂2 · · · ∂l if Fk(H) is free [{x1, x2, . . . , xl} = V (Fk(H))] ;

0̂, otherwise.
(17)

In our manipulations, we often use a reduced version D (Fk(H)) = zu∂1∂2 · · · ∂l

without the usual weight w
qk
f .

For further practical applications, we use symmetry-restricted polynomials P(G; H ;
y, z) with new variables yp and zu . Here, it is worth mentioning that the topic of graph
polynomials can be regarded as a part of a more general one of hypergraph polynomi-
als. In our case, we have a hypergraph H yp(X; E∗) with the same vertex set X and
the set E∗ of hyperedges which are simply orbits Xi (H) of vertices and free orbits
Fj (H) of edges induced by a subgroup H ⊆ A, or E∗ = O(H)∪FH . The role of the
family F∗ of ‘connected hypergraphs’ can be played by the hyperedge set E∗; in such
a case, we might talk of the hypermatching polynomial of a hypergraph H yp or, by
some abuse of language, even the hypermatching polynomial of a graph G. Addition-
ally, note that the adjective “free” used above is a facultative provision for edge orbits
included in F∗, since nonfree orbits correspond to a zero operator 0̂ in (17). Notice
also that hypergraphs can model multiparticle interactions in a molecule, while usual
graphs can be viewed to describe only binary interactions between atoms (or orbitals).

This subsection’s final, practical result is simply a technical mutation of Theorem 1:

Proposition 2 Let P(G; H ; y, z) be a generalized symmetry-restricted polynomial of
a graph G as above. Then

P(G; H ; y, z)

=
⎧
⎨

⎩
∏

X j ∈O(H)

∏

Fk∈FH

[(
1̂ + D(X j (H))

) (
1̂ + D(Fk(H))

)]
⎫
⎬

⎭

n∏

i=1

xi

∣∣∣∣∣ xi =0
(1≤i≤n)

, (18)
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where the first and the second products embrace all vertex orbits X j (H) and all (free)
edge orbits Fk(H) induced by a subgroup H ⊆ A, respectively.

Proof The proof is based on Lemma 1 and is similar to that of Theorem 2. The addi-
tional condition xi = 0 (1 ≤ i ≤ n) is imposed to eliminate all terms containing
auxiliary variables xi which do not enter the polynomial P(G; H ; y, z), by definition.

��
Note that since all variables yp and zu are associated with ‘vertex cardinalities’

of respective orbits (of both vertices and edges), all literal terms in the polynomial
P(G; H ; y, z) also obey the Rule 1 (of Part I), as is easily seen, provided that one
substitutes any third character for both y and z and conserves all subscripts. Aware-
ness of cycle indices is suggestive that this property is further useful for performing
our major task—when we use these P(G; H ; y, z) to compute the generalized cycle
indicators enumerating substitutional isomers with symmetry restrictions. Thence, we
turn in the next subsection to consider these matters.

2.3 Pólya’s cycle indicator and its refinements

Without exaggeration, one may say that the works of Redfield [19] and Pólya [1]
founded the basis of the modern theory [2–4,11] of enumeration of objects distin-
guishable under the automorphism group. The main earlier known underlying tool
was the Cauchy-Frobenius lemma (often called [20] Burnside’s lemma). Pólya uti-
lized this result to derive his celebrated counting theorem introducing a special gen-
erating function now called Pólya’s cycle index (or indicator) [1]. Although there
are powerful methods employing double cosets [21,22] or Burnside’s table of marks
[13,14], Pólya’s cycle index [1] and its refinements have persisted [3,4,10,11,23–25].
Specifically, we adapt herein a combinatorial method [12] which may be called a
double-Pólya approach, because it applies the classic Pólya approach twice, at two
consecutive levels—first, to a closed subgroup Ĥ ⊆ A ∼= AutX acting on a basic set
X and, then, to its normalizer NA(Ĥ) acting both on the set Ĥ\\X of orbits, induced
by Ĥ , and on X itself, where NA(Ĥ) ∼= Aut(Ĥ\\X) (as in Theorem 1 in [11] or
below). Earlier [11], we called it a normalizer approach. Now, we shall consider this
subject more thoroughly.

For an arbitrary subgroup H ⊆ A, the normalizer NA(H) := {g ∈ A | gH = Hg}.
With respect to combinatorial actions of NA(Ĥ) on the set Ĥ\\X of orbits induced
by a closed subgroup Ĥ on the set X , we proved the following (Theorem 1 on p. 115
of [12]):

Theorem 3 Let Ĥ be a closed subgroup of A. Then the normalizer NA(Ĥ) is the
maximum subgroup, in A, the elements of which permute the intact orbits of Ĥ on X.

We specially emphasize that, in general, Theorem 3 does not work for an arbitrary
subgroup H—just for its closure Ĥ . This result was initially known as an empiri-
cal observation concerning crystallographic symmetry groups, and the rigorous proof
[11] opened an avenue of further applications, including the computation of special
generating functions of the number of substitutional isomers in the present work.
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Let A = AutX be the automorphism (or permutation) group acting on a nonempty
finite set X of objects, as above. Pólya [1] showed that A-equivalence classes of
objects, or A-orbits, can be enumerated by weight, by means of the polynomial called
the cycle index [2–4]:

C(A; X) = C(A; X; s1, s2, . . . , sn) = 1

|A|
∑

g∈A

∏

i | |A|
sςi (〈g〉)

i , (19)

where |A| is the cardinality of a group A; the si are weight-indeterminates; ςi (〈g〉)
is the number of orbits of length i induced by the cyclic group 〈g〉 generated by an
element g ∈ A; the sum runs over all elements of A; and the product is taken over all
divisors i of |A|. We mention that ςi (g) a new notation ςi (〈g〉) is so as to extend the
old tradition with just cyclic (1-generator) subgroups, now to deal with more general
subgroups 〈S〉 generated by the members of S ⊆ A (see [11]). Also, a varsigma version
“ς” is used in place of the previous usual character “σ”. We choose such a connotation,
because all literal terms of cycle indicators also obey the Rule 1 of Part I. As already
mentioned, just this similarity in properties of literal terms of the F-polynomials of
graphs and cycle indices allows extension of the general combinatorial results of [12]
to the case of the generating functions under consideration.

Let K = {c1, c2, . . . , c|K |} be a set of weight-indeterminates each standing for one
of |K | distinct colors. Then, a version of Pólya’s counting theorem [1–4,11,23] is:

Theorem 4 The number of A-equivalence classes of K -colorings of X with a given
assortment of K -colors equals the corresponding coefficient of the polynomial

C(A; X; c1, c2, . . . , cn) = C(A; X; s1, s2, . . . , sn)

∣∣∣si =∑|K |
t=1 ci

t (i | |A|) . (20)

Here, we can turn from coloring individual elements of X to coloring intact
Ĥ -orbits (i.e., elements X (Ĥ) of the set Ĥ\\X ). The following statement is an ele-
mentary corollary of the Theorems 3 and 4 (see Lemma 3 on p. 116 of [10]):

Lemma 5 The number of A-equivalence classes of K -colorings of Ĥ\\X with a given
assortment of K -colors equals the corresponding coefficient of the polynomial

C(NA(Ĥ); Ĥ\\X; c1, c2, . . . , cn) =
⎡

⎢⎣
1

|NA(Ĥ)|
∑

g∈NA(Ĥ)

∏

i | |NA(Ĥ)|
sςi (〈g〉)
i

⎤

⎥⎦
si =∑|K |

t=1 ci
t

(i | |A|)

.

(21)

Lemma 5 just symbolizes the Pólya-type approach with consideration of the actions
of NA(Ĥ) on Ĥ\\X . Below, in Theorem 4, we utilize this universality of Pólya’s
counting theorem for counting equivalence classes of arbitrary objects, disregarding
their nature, yet on larger scales.

Apparently, the maximum orbit length realizable in the ‘second-level set’
NA(Ĥ)\\(Ĥ\\X) ‘of orbits on orbits’ is b = |NG(Ĥ)|/|Ĥ |. Note that Ĥ lies in
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the kernel of the action of NA(Ĥ) on H\\X , whence we can replace NA(Ĥ) with
NA(Ĥ)/Ĥ and, therefore, restrict the summation over the complete normalizer NA(Ĥ)

to that over the left cosets gĤ of Ĥ in NA(Ĥ). As a result (see Lemma 4 on p. 116 of
[12]):

Lemma 6 Let C(NA(Ĥ); Ĥ\\X) be the above cycle indicator. Then

C(NA(Ĥ); Ĥ\\X; s1, s2, . . . , sn)

= 1

b

∑

gĤ∈NA(Ĥ)/Ĥ

|H\\X |∏

i=1

sςi (〈gĤ〉)
i = 1

b

∑

g∈J

∏

i | b

sςi (〈g〉)
i , (22)

where the first summation goes over all left cosets of Ĥ in NA(Ĥ); 〈gĤ〉 is the sub-
group generated by elements of gĤ; the first product is over all divisors of |H\\X |;
the second summation goes over the members of a transversal J (|J | = b) of left
cosets gH; and the last product is over all divisors of b.

Evidently, this is a special version of Pólya’s counting theorem, for the ‘second-level
set’ Ĥ\\X and an initial subgroup’s normalizer NA(Ĥ). The transversal J above need
not be a subgroup of NA(Ĥ). Indeed, there may exist no subgroup H ′ ∼= NA(Ĥ)/Ĥ
in NA(Ĥ) at all (or there may exist more than one).

Now, each orbit of 〈gĤ〉\\(Ĥ\\X) is the union of complete orbits from Ĥ\\X .
Also, in the case of groups, all orbits of the latter set comprising one orbit of the former
set, have the same cardinality. Then, one can derive (as in Lemma 5 on p. 118 of [11]):

Lemma 7 Let Ĥ (Ĥ ⊆ A) be a closed subgroup of A. The number of A-equivalence
classes of Ĥ -invariant K -colorings of X, with a given assortment of colors equals the
corresponding coefficient of the generalized cycle index

Q(Ĥ ; X; c1, c2, . . . , cn) = Q(Ĥ ; X; s1, s2, . . . , sn)

∣∣∣si =∑|K |
t=1 ci

t (1≤i≤n)
, (23)

where (with J as in Lemma 6)

Q(Ĥ ; X; s1, s2, . . . , sn) := 1

b

∑

g∈J

∏

p | b

∏

q | |Ĥ |
s
ςp·q (〈gĤ〉)
p·q . (24)

A generalization of Pólya’s theorem follows (Theorem 6 on p. 118 of [12]):

Theorem 8 The number of A-equivalence classes of Ĥ -invariant K -colorings of X
with a given assortment of K -colors equals the corresponding coefficient of the poly-
nomial

Q(Ĥ ; X; c1, c2, . . . , cn) =
⎡

⎣1

b

∑

g∈J

∏

i | |NA(Ĥ)|
sςi (〈gĤ〉)

i

⎤

⎦

si =∑|K |
t=1 ci

t (1≤i≤n)

, (25)
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where
⎡

⎣1

b

∑

g∈J

∏

i | |NA(Ĥ)|
sςi (〈gĤ〉)

i

⎤

⎦ = Q(Ĥ ; X; s1, s2, . . . , sn). (26)

Evidently, setting Ĥ = {e} (|{e}| = 1) in (7) of Part I gives the famous Pólya’s
counting theorem as an immediate corollary of Theorem 8.

Now, recall that literal monomials (such as
∏

i | b sςi (〈g〉)
i etc.) in all sorts of

cycle indices above indicate a certain distribution of a support set X into orbits
X1, X2, . . . , Xs . But we consider this distribution into orbits also as an F-cover C, of
X , with hyperedges, which are the orbits X j (Ĥ) induced on X by a closed subgroup
Ĥ ∈ A. However, a monomial is sufficient to represent just the distribution of one set
of objects (X or any other). If one simultaneously considers, in one combined prob-
lem, several sorts of orbit distributions (say, of sets of vertices, edges, cycles, etc. of a
graph), one literal monomial is insufficient, since several F-covers of a support set X
then exist for it. Thus, we undoubtedly need a polynomial where every literal term cor-
responds exactly to a different sort of orbit distribution (or F-cover) while numerical
coefficients indicate the numbers of corresponding distributions (F-covers). To deal
with this, we need to address further the polynomials P(G; Ĥ ; y, z) of Proposition 2.
Their application is best demonstrated by the following polynomial extension of the
Theorem 8, directed to the case of a simultaneous distribution of several sets:

Proposition 9 Let Q(NA(Ĥ); Ĥ\\X) be the above cycle index. Then

Q(NA(Ĥ); Ĥ\\X; y; z) = 1

b

∑

g∈J

P(〈gĤ〉; Ĥ\\X; y, z), (27)

where the same‘special’ weight-indeterminates, introduced above, are adopted; and
the summation ranges over members of a transversal J of the left cosets gĤ in NA(Ĥ).

Note that, even if Ĥ in (27) is a closed subgroup, 〈gĤ〉 might not be closed. Also,
our ‘polynomial extension’ above was employed by Harary and Palmer [4] to count
orientations of a graph.

To treat all possible K -colorings of X , we need only all closed subgroups Ĥ ⊆ A.
Besides, since all conjugated subgroups have the same cycle index Q, as well as C ,
we may confine ourselves to a fixed transversal T of conjugacy classes of closed
subgroups.

The symmetry-specific cycle indicators R(Ĥ ; X)’s which correspond to
K -colorings of X (res. Ĥ\\X ) for which Ĥ is exactly the automorphism group are
calculated through all needed indicators Q(Ĥ ; X)’s using the exclusion and inclusion
argument and combinatorial incidence functions (ζ - & μ-functions). Direct solution
of the corresponding system of simultaneous linear equations for all R(Ĥ ; X)’s, is
possible, as well; see a case in point dealing with substituted benzenes on p. 109–112
of [12]. Let R (res. Q) be a column vector with components Ri = F(G; Ĥi ; y, z) (res.
Qi = Q(G; Ĥi ; y, z)) (1 ≤ i ≤ r). Then, the solution of our system of simultaneous
linear equations, with a coefficients matrix ζ , is
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R = ζ−1Q = μQ, (28)

as is similar to (6).
At this stage of our exposition, we may turn to solving actual tasks of practical use

to chemistry (and perhaps to other fields).

3 Illustrative application

Here, we consider practical applications of the theoretical approaches discussed in
preceding sections, beginning with simpler tasks. Problems with more complex mole-
cules may be solved in a similar way using associated information on their symmetry
group and lattice of (closed) subgroups. A trigonal prismatic skeleton is considered,
with monodentate & bidentate ligands.

Among molecules having only covalent bonds and trigonal prismatic geome-
try with the symmetry group D3h , one case is prismane C6H6. Another case is
W(CH3)6 which however is slightly distorted to C3v symmetry. Among inorganic
coordination complexes with a coordination number 6, octahedral symmetry prevails.
Instances with trigonal-prismatic symmetry are Mo(SCHCHS)3, tris(cis(-1,2-diphen-
ylene)-1,2-dithiolate)rhenates and molybdates, e.g., Me1+

2 [Re(S2C2(C6H5)2)3]2− and
[Ph4As]1+

2 [Mo(S2C2(CN)2)3]2−.
Figure 1 displays a fixed numbering of vertices of a trigonal prism which is used

hereafter. For further manipulations, we need also to introduce a fixed numeration
of edges, viz.: e1 = {1, 2}, e2 = {1, 3}, e3 = {1, 4}, e4 = {2, 3}, e5 = {2, 5}, e6 =
{3, 6}, e7 = {4, 5}, e8 = {4, 6}, e9 = {5, 6}.

Fig. 1 A graph of the trigonal prism
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3.1 Structural isomers

The symmetry group D3h is comprised from 12 permutations, viz.:

{
h1 = (1)(2)(3)(4)(5)(6) = ( 1 2 3 4 5 6

1 2 3 4 5 6

)
, h2 = (1, 5)(2, 4)(3, 6) = ( 1 2 3 4 5 6

5 4 6 2 1 3

)
,

h3 = (1, 4)(2, 6)(3, 5) = ( 1 2 3 4 5 6
4 6 5 1 3 2

)
, h4 = (1, 6)(2, 5)(3, 4) = ( 1 2 3 4 5 6

6 5 4 3 2 1

)
,

h5 = (1, 2)(3)(4, 5)(6) = ( 1 2 3 4 5 6
2 1 3 5 4 6

)
, h6 = (1)(2, 3)(4)(5, 6) = ( 1 2 3 4 5 6

1 3 2 4 6 5

)
,

h7 = (1, 3)(2)(4, 6)(5) = ( 1 2 3 4 5 6
3 2 1 6 5 4

)
, h8 = (1, 2, 3)(4, 5, 6) = ( 1 2 3 4 5 6

2 3 1 5 6 4

)
,

h9 = (1, 3, 2)(4, 6, 5) = ( 1 2 3 4 5 6
3 1 2 6 4 5

)
, h10 = (1, 4)(2, 5)(3, 6) = ( 1 2 3 4 5 6

4 5 6 1 2 3

)
,

h11 = (1, 5, 3, 4, 2, 6) = ( 1 2 3 4 5 6
5 6 4 2 3 1

)
, h12 = (1, 6, 2, 4, 3, 5) = ( 1 2 3 4 5 6

6 4 5 3 1 2

)}
.

There are 10 pairwise nonconjugated subgroups: C1 of order 1, C ′
2, Cs , & C ′

s of order
2; C3 of order 3; C2v of order 4; D3, S3, & C3v of order 6, and D3h itself of order
12. In our case, closed subgroups are C1, C ′

2, Cs , C ′
s , C ′

2v , C3v , & D3h . The other
3 subgroups are not closed: C3 is coorbital with its closure C3v , while D3 & S3 are
coorbital with D3h . But because C3 & S3 are formally involved in calculating the
generalized indicator Q(ND3h (Ĉ1); Ĉ1\\X; y; z) = Q(D3h; C1\\X; y; z), these 2
nonclosed subgroups also arise. Therefore, as yet, there is no special economy of time
if we exclude the remaining subgroup D3—at least when we represent needed sub-
groups of D3h by permutations. Nevertheless, in general, a certain economy may be
achieved when it is further needed to calculate the ζ− and Möbius functions (though
herein, we have but a modest economy with 7×7 matrices vs. 10×10 ones). Choosing
the closed-subgroup option, we should, however, note that one may also employ the
entire lattice of all subgroups while applying the inclusion-exclusion procedure for
calculation of these functions; especially, if for some reason it is difficult to find closed
subgroups quickly. This might take place, say, when a complex mixture of polyden-
tate ligands arises, because ligands with distinct numbers of ligating sites induce in
general different subsets of closed subgroups, and one must then find their overall
covering subset. Thus, which option is chosen is to a certain degree dependent on
specific circumstances and preferences of the user.

Now, the 10 subgroups of A = D3h are:

H1 = C1 = {h1},
H2 = C ′

2 = {h1, h2},
H3 = Cs = {h1, h10},
H4 = C ′

s = {h1, h5},
H5 = C3 = {h1, h8, h9} = 〈h8〉,
H6 = C ′

2v = {h1, h2, h5, h10} = 〈h2, h6〉,
H7 = D3 = {h1, h2, h3, h4, h8, h9} = 〈h2, h8〉,
H8 = S3 = {h1, h8, h9, h10, h11, h12} = 〈h11〉,
H9 = C3v = {h1, h5, h6, h7, h8, h9} = 〈h5, h8〉,

H10 = D3h = {h1, h2, h3, h4, h5, h6, h7, h8, h9, h10} = 〈h2, h11〉,
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where 〈· · · 〉 denotes the (sub)group generated from a respective set of generators
(which are written within the brackets).

The next step is to determine orbits induced by all 10 subgroups of A = D3h on
vertices and edges of the triangular prism (in Fig. 1) and write down all differential
operators representing these orbits in our approach. The orbits are:

H1\\V = {{1}, {2}, {3}, {4}, {5}, {6}}&
H1\\E = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}};
H2\\V = {{1, 5}, {2, 4}, {3, 6}}&H2\\E = {{1, 7}, {2, 9}, {3, 5}, {4, 8}, {6}};
H3\\V = {{1, 4}, {2, 5}, {3, 6}}&H3\\E = {{1, 7}, {2, 8}, {3}, {4, 9}, {5}, {6}};
H4\\V = {{1, 2}, {3}, {4, 5}, {6}}&H4\\E = {{1}, {2, 4}, {3, 5}, {6}, {7}, {8, 9}};
H5\\V = {{1, 2, 3}, {4, 5, 6}}&H5\\E = {1, 2, 4}, {3, 5, 6}, {7, 8, 9}};
H6\\V = {{1, 2, 4, 5}, {3, 6}}&H6\\E = {{1, 7}, {2, 4, 8, 9}, {3, 5}, {6}};
H7\\V = {{1, 2, 3, 4, 5, 6}}&H7\\E = {{1, 2, 4, 7, 8, 9}, {3, 5, 6}};
H8\\V = {{1, 2, 3, 4, 5, 6}}&H8\\E = {{1, 2, 4, 7, 8, 9}, {3, 5, 6}};
H9\\V = {{1, 2, 3}, {4, 5, 6}}&H9\\E = {{1, 2, 4}, {3, 5, 6}, {7, 8, 9}};
H10\\V = {{1, 2, 3, 4, 5, 6}}&H10\\E = {{1, 2, 4, 7, 8, 9}, {3, 5, 6}},

where the numbers j and k substitute for respective vertices v j and edges ek , and
the underlining indicates nonfree orbits (containing edges with common vertices, and
which are not used in construction of differential operators representing orbits, as
below).

Now, we give differential operators, with weight multipliers ys representing vertex
orbits, and with weight multipliers zt representing edge orbits, where subscripts s and
t indicate the number of vertices in an orbit (or ligated sites in a molecule). Again,
the index t thus indicates a double number of edges in an orbit, rather than that num-
ber itself. Moreover, recall that the subscript of variable xi indicates only the number
attached to a vertex which is included in a respective vertex orbit or to that which is
incident to a certain edge in an edge orbit—this subscript does not indicate the ordinal
number of an edge (even if involved in an operator representing an edge orbit)!

H1 = C1 : y1∂1, y1∂2, y1∂3, y1∂4, y1∂5, y1∂6, z2∂1∂2, z2∂1∂3, z2∂1∂4, z2∂2∂3, z2∂2∂5,

z2∂3∂6, z2∂4∂5, z2∂4∂6, z2∂5∂6;
H2 = C ′

2 : y2∂1∂5, y2∂2∂4, y2∂3∂6, z4∂1∂2∂4∂5, z4∂1∂3∂5∂x6, z4∂2∂3∂4∂6, z2∂3∂6;
H3 = Cs : y2∂1∂4, y2∂2∂5, y2∂3∂6, z4∂1∂2∂4∂5, z4∂1∂3∂4∂6, z2∂1∂4, z4∂2∂3∂5∂6, z2∂2∂5, z2∂3∂6;
H4 = C ′

s : y2∂1∂2, y1∂3, y2∂4∂5, y1∂6, z2∂1∂2, z4∂1∂2∂4∂5, z2∂3∂6, z2∂4∂5;
H5 = C3 : y3∂1∂2∂3, y3∂4∂5∂6, z6∂1∂2∂3∂4∂5∂6;
H6 = C ′

2v : y4∂1∂2∂4∂5, y2∂3∂6, z4∂1∂2∂4∂5, z4∂1∂2∂4∂5, z2∂3∂6;
H7 = D3 : y6∂1∂2∂3∂4∂5∂6, z6∂1∂2∂3∂4∂5∂6;
H8 = S3 : y6∂1∂2∂3∂4∂5∂6, z6∂1∂2∂3∂4∂5∂6;
H9 = D3 : y3∂1∂2∂3, y3∂4∂5∂6, z6∂1∂2∂3∂4∂5∂6;

H10 = D3h : y6∂1∂2∂3∂4∂5∂6, z6∂1∂2∂3∂4∂5∂6,

where all differential operators are given in the same order as the respective vertex
and free-edge orbits listed above.
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In order to calculate all symmetry-restricted polynomials P(G; H ; y, z), we
use (18), which involves operators D(X j (H)) = ys∂ j1∂ j2 ···∂ js

and D(Fk(H)) =
zt∂k1∂k2 · · · ∂kt , where H ⊆ D3h (as indicated above). We do not demonstrate here
all our successive computations by (19), made with the aid of Maple 14, because of
a relatively large size of the expressions in variables y j and zt —instead giving final
working formulae for the simplest mixture of polydentate ligand involving only one
sort of monodentate ligand and only one sort of bidentate ones. These are obtained
through the substitutions ys = 1 + ys and zt = zt (s ∈ [1, 6]) therein (where 1 stands
for a pristine molecule without ligand). Apparently, familiar considerations of the
Pólya’s cycle-index method may be applied here to produce similar generating func-
tions for any other numbers of ligand sorts (just using more weight-indeterminates
therein). Our ‘simplest-case’ polynomials are:

P(D3h; H1\\V ; y, z) = 1 + 6y + 15y2 + 20y3 + 15y4 + 6y5 + y6 + (9 + 36y

+54y2 + 36y3 + 9y4)z2 + (18 + 36y + 18y2)z4 + 4z6;
P(D3h ; H2\\V ; y, z) = 1 + 3y2 + 3y4 + y6 + (1 + 2y2 + y4)z2 + (4 + 4y2)z4 + 2z6;
P(D3h; H3\\V ; y, z) = 1 + 3y2 + 3y4 + y6 + (3 + 6y2 + 3y4)z2 + (6 + 6y2)z4 + 4z6;
P(D3h ; H4\\V ; y, z) = 1 + 2y + 3y2 + 4y3 + 3y4 + 2y5 + y6 + (3 + 4y + 6y2 + 4y3

+3y4)z2 + (4 + 4y + 4y2)z4 + 2z6;
P(D3h; H5\\V ; y, z) = 1 + 2y3 + y6 + z6;
P(D3h; H6\\V ; y, z) = 1 + y2 + y4 + y6 + (1 + y4)z2 + (2 + 2y2)z4 + 2z6;
P(D3h; H7\\V ; y, z) = 1 + y6 + z6;
P(D3h; H8\\V ; y, z) = 1 + y6 + z6;
P(D3h; H9\\V ; y, z) = 1 + 2y3 + y6 + z6;

P(D3h; H10\\V ; y, z) = 1 + y6 + z6,

where the powers of both y and z indicate the number of ligated sites (rather than the
numbers of ligands, in the latter case). Note that P(D3h; H1\\V ; 0, z) is the match-
ing-enumeration polynomial of the prism.

In order to proceed, we first determine the normalizers ND3h (Hj ) of subgroups
Hj ⊆ D3h , then, find their right (res. left) cosets Hj g in the corresponding normaliz-
ers, and, further, calculate (sub)groups 〈Hj g〉 for all such cosets Hj g of every subgroup
Hj . Note that Maple has special packages to perform such a task. This information is
given here in the following combined form:

ND3h (H1) = H10 = 〈H1h1〉 ∪ 〈H1h2〉 ∪ 〈H1h3〉 ∪ 〈H1h4〉 ∪ 〈H1h5〉 ∪ 〈H1h6〉 ∪ 〈H1h7〉
∪H1h8〉 ∪ 〈H1h9〉 ∪ 〈H1h10〉 ∪ 〈H1h11〉 ∪ 〈H1h12〉 = H1 ∪ H2

∪H2 ∪ H2 ∪ H4 ∪ H4 ∪ H4 ∪ H5 ∪ H5 ∪ H3 ∪ H8 ∪ H8;
ND3h (H2) = H6 = 〈H2h1〉 ∪ 〈H2h5〉 = H2 ∪ H6;
ND3h (H3) = H10 = 〈H3h1〉 ∪ 〈H3h5〉 ∪ 〈H3h6〉 ∪ 〈H3h7〉 ∪ 〈H3h8〉 ∪ 〈H3h9〉

= H3 ∪ H6 ∪ H6 ∪ H6 ∪ H9 ∪ H9;
ND3h (H4) = H6 = 〈H4h1〉 ∪ 〈H4h10〉 = H4 ∪ H6;
ND3h (H5) = H10 = 〈H5h1〉 ∪ 〈H5h3〉 ∪ 〈H5h6〉 ∪ 〈H5h10〉 = H5 ∪ H7 ∪ H9 ∪ H8;
ND3h (H6) = H6 = 〈H6h1〉 = H6;
ND3h (H7) = H10 = 〈H7h1〉 ∪ 〈H7h6〉 = H7 ∪ H10;
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ND3h (H8) = H10 = 〈H8h1〉 ∪ 〈H8h6〉 = H8 ∪ H10;
ND3h (H9) = H10 = 〈H9h1〉 ∪ 〈H9h10〉 = H9 ∪ H10;

ND3h (H10) = H10 = 〈H10h1〉 = H10,

where the 〈Ĥ j g〉-decomposition of each normalizer determines the subsymmetry-
reduced polynomial Q j := Q(ND3h (Ĥ j ); Ĥ j\\V ; y, z) as a linear combination of all
respective polynomials Pj := P(〈Ĥ j g〉; Ĥ j\\V ; y, z), done according to (27). Here,
recall that the closure Ĥ j is used instead of Hj in case if Hj is a nonclosed subgroup
Hj ⊂ Ĥ j , but this is independent the coset decomposition of normalizers, which is
good for either case.

Now, we give the polynomials Q(ND3h (Ĥ j ); Ĥ j\\V ; y, z) for all 10 subgroups of
D3h (which is in some excess if one wants to use only 7 closed subgroups):

Q1 = (1/12)(P1 + 3P2 + P3 + 3P4 + 2P5 + 2P8) = 1 + y + 3y2 + 3y3 + 3y4

+y5 + y6 + (2 + 4y + 7y2 + 4y3 + 2y4)z2 + (4 + 4y + 4y2)z4 + 2z6;
Q2 = (1/2)(P2 + P6) = 1 + 2y2 + 2y4 + y6 + (1 + y2 + y4)z2 + (3 + 3y2)z4 + 2z6;
Q3 = (1/6)(P3 + 3P6 + 2P8) = 1 + y2 + y4 + y6 + (1 + y2 + y4)z2 + (2 + 2y2)z4 + 2z6;
Q4 = (1/2)(P4 + P6) = 1 + y + 2y2 + 2y3 + 2y4 + y5 + y6 + (2 + 2y + 3y2 + 2y3

+2y4)z2 + (3 + 2y + 3y2)z4 + 2z6;
Q5 = (1/4)(P5 + P9 + P7 + P8) = 1 + y3 + y6 + z6;
Q6 = (1/1)P6 = 1 + y2 + y4 + y6 + (1 + y4)z2 + (2 + 2y2)z4 + 2z6;
Q7 = (1/2)(P7 + P10) = 1 + y6 + z6;
Q8 = (1/2)(P8 + P10) = 1 + y6 + z6;
Q9 = (1/2)(P9 + P10) = 1 + y3 + y6 + z6;

Q10 = (1/1)P10 = 1 + y6 + z6,

where each denominator of a fractional coefficient is the number of cosets in a respec-
tive decomposition of a normalizer. Recall the standard Pólya’s cycle-index averag-
ing, here, done over all |ND3h (Hj )|/|Hj | elements of the factor group ND3h (Hj )/Hj ,
which are right cosets Hj g.

We know that each symmetry-reduced indicator Q j above enumerates substitu-
tional isomers whose own automorphism (symmetry) group H obligatorily includes
Hj and may in general be larger (Hj ⊆ H ⊆ A). In order to calculate symme-
try-specific polynomials R j , enumerating the same isomers but with an exact auto-
morphism group Hj , one should apply the inclusion-exclusion-type procedure, or
equivalently the Möbius function. In our case (with 7 closed subgroups), these are
both 7 × 7 matrices. The ζ -function is

ζ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
0 1 0 0 1 0 1
0 0 1 0 1 0 1
0 0 0 1 1 1 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where an entry ζi j = 1 iff H ′
i ⊆ H ′

j (1 ≤ i ≤ j ≤ 7). In this case, for excluding
nonclosed subgroups H5 = C3, H7 = D3, and H8 = S3, we have the following renum-
bered subgroups: H ′

1 = H1, H ′
2 = H2, H ′

3 = H3, H ′
4 = H4, H ′

5 = H6, H ′
6 = H9, and

H ′
7 = H10. The same correspondence of indices is adopted below, when the prime (′)

is applied to groups.
The Möbius function is the matrix μ = ζ−1:

μ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 −1 2 0 0
0 1 0 0 −1 0 0
0 0 1 0 −1 0 0
0 0 0 1 −1 −1 1
0 0 0 0 1 0 −1
0 0 0 0 0 1 −1
0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From (29), it follows that R′
i =∑μi j Q′

j (1 ≤ i ≤ j ≤ 7). Hence, we obtain:

R1(C1) = R′
1 = Q′

1 − Q′
2 − Q′

3 − Q′
4 + 2Q′

5 = Q1 − Q2 − Q3 − Q4 + 2Q6

= y3 + (2y + 2y2 + 2y3)z2 + 2yz4;
R2(C

′
2) = R′

2 = Q′
2 − Q′

5 = Q2 − Q6 = y2 + y4 + y2z2 + (1 + y2)z4;
R3(Cs) = R′

3 = Q′
3 − Q′

5 = Q3 − Q6 = y2z2;
R4(C

′
s) = R′

4 = Q′
4 − Q′

5 − Q′
6 + Q′

7 = Q4 − Q6 − Q9 + Q10 = y + y2 + y3

+y4 + y5 + (1 + 2y + 3y2 + 2y3 + y4)z2 + (1 + 2y + y2)z4;
R5(C3) = 0;

R6(C
′
2v) = R′

5=Q′
5 − Q′

7=Q6 − Q10=y2 + y4 + (1 + y4)z2 + (2 + 2y2)z4 + z6;
R7(D3) = 0;
R8(S3) = 0;

R9(C3v) = R′
6 = Q′

6 − Q′
7 = Q9 − Q10 = y3;

R10(D3h) = R′
7 = Q′

7 = Q10 = 1 + y6 + z6,

where 0s indicate the omission of respective nonclosed subgroups in our inclusion-
exclusion procedure. These generating polynomials enumerate substitutional isomers
of the prismanes with symmetry exactly corresponding to a respective subgroup Hj ⊆
D3h , not distinguishing enantiomers.

3.2 Stereo isomers

In order to enumerate stereomers, we need to perform similar calculations involving
the automorphism group D3 in place of D3h . We have:

ND3(H1) = H7 = 〈H1h1〉 ∪ 〈H1h2〉 ∪ 〈H1h3〉 ∪ 〈H1h4〉 ∪ 〈H1h8〉 ∪ 〈H1h9〉
= H1 ∪ H2 ∪ H2 ∪ H2 ∪ H5 ∪ H5;
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ND3(H2) = H2 = 〈H2h1〉 = H2;
ND3(H3) = H10 = 〈H3h1〉 ∪ 〈H3h5〉 ∪ 〈H3h6〉 ∪ 〈H3h7〉 ∪ 〈H3h8〉 ∪ 〈H3h9〉

= H3 ∪ H6 ∪ H6 ∪ H6 ∪ H9 ∪ H9;
ND3(H4) = H6 = 〈H4h1〉 ∪ 〈H4h2〉 = H4 ∪ H6;
ND3(H5) = H7 = 〈H5h1〉 ∪ 〈H5h3〉 = H5 ∪ H7;
ND3(H6) = H6 = 〈H6h1〉 = H6;
ND3(H7) = H7 = 〈H7h1〉 = H7;
ND3(H8) = H8 = 〈H8h1〉 = H8;
ND3(H9) = H10 = 〈H9h1〉 ∪ 〈H9h2〉 = H9 ∪ H10;
ND3(H10) = H10 = 〈H10h1〉 = H10.

For the case of D3, we label the associated Qi polynomials by Q̄i to distinguish
them from the Qi associated with D3h . Then,

Q̄1 = (1/6)(P1 + 3P2 + 2P5) = 1 + y + 4y2 + 4y3 + 4y4 + y5 + y6

+(2 + 6y + 10y2 + 6y3 + 2y4)z2 + (5 + 6y + 5y2)z4 + 2z6;
Q̄2 = (1/1)P2 = 1 + 3y2 + 3y4 + y6 + (1 + 2y2 + y4)z2 + (4 + 4y2)z4 + 2z6;
Q̄3 = (1/6)(P3 + 3P6 + 2P9) = 1 + y2 + y4 + y6 + (1 + y2 + y4)z2

+(2 + 2y2)z4 + 2z6;
Q̄4 = (1/2)(P4 + P6) = 1 + y + 2y2 + 2y3 + 2y4 + y5 + y6

+(2 + 2y + 3y2 + 2y3 + 2y4)z2 + (3 + 2y + 3y2)z4 + 2z6;
Q̄5 = (1/2)(P5 + P7) = 1 + y3 + y6 + z6;
Q̄6 = (1/1)P6 = 1 + y2 + y4 + y6 + (1 + y4)z2 + (2 + 2y2)z4 + 2z6;
Q̄7 = (1/1)P7 = 1 + y6 + z6;
Q̄8 = (1/1)P8 = 1 + y6 + z6;
Q̄9 = (1/2)(P9 + P10) = 1 + y3 + y6 + z6;
Q̄10 = (1/1)P10 = 1 + y6 + z6.

Now, one is to calculate R̄ j polynomials which for D3 are also denoted by R̄ j . This
still entails the same ζ - & μ-functions—attaching the bar to capitals R & Q in the
expressions deduced for R j above. Thence, we obtain:

R̄1(C1) = R̄′
1 = Q̄′

1 − Q̄′
2 − Q̄′

3 − Q̄′
4 + 2Q̄′

5 = Q̄1 − Q̄2 − Q̄3 − Q̄4 + 2Q̄6

= 2y3 + (4y + 4y2 + 4y3)z2 + 4yz4;
R̄2(C

′
2) = R̄′

2 = Q̄′
2 − Q̄′

5 = Q̄2 − Q̄6 = 2y2 + 2y4 + 2y2z2 + (2 + 2y2)z4;
R̄3(Cs) = R̄′

3 = Q̄′
3 − Q̄′

5 = Q̄3 − Q̄6 = y2z2;
R̄4(C

′
s) = R̄′

4 = Q̄′
4 − Q̄′

5 − Q̄′
6 + Q̄′

7 = Q̄4 − Q̄6 − Q̄9 + Q̄10 = y + y2 + y3

+y4 + y5 + (1 + 2y + 3y2 + 2y3 + y4)z2 + (1 + 2y + y2)z4;
R̄5(C3) = 0;

123



J Math Chem (2013) 51:239–264 261

R̄6(C
′
2v) = R̄′

5=Q̄′
5 − Q̄′

7=Q̄6 − Q̄10 = y2 + y4 + (1 + y4)z2 + (2 + 2y2)z4 + z6;
R̄7(D3) = 0;
R̄8(S3) = 0;
R̄9(C3v) = R̄′

6 = Q̄′
6 − Q̄′

7 = Q̄9 − Q̄10 = y3;
R̄10(D3h) = R̄′

7 = Q̄′
7 = Q̄10 = 1 + y6 + z6,

where again 0s indicate the omission of respective nonclosed subgroups in our inclu-
sion-exclusion procedure.

These Ri enumerate the stereomers of different symmetries. But these may also be
resolved into enantiomeric pairs and diastereomers. First, the enantiomeric pairs of
different subsymmetries are evidently given as R̄i − Ri , and second, the corresponding
diastereomer counts are given as Ri − Si . We find:

S1(C1) = R̄1 − R1 = y3 + (2y + 2y2 + 2y3)z2 + 2yz4;
S2(C ′

2) = R̄2 − R2 = y2 + y4 + y2z2 + (1 + y2)z4;
S3(Cs) = R̄3 − R3 = 0;
S4(C ′

s) = R̄4 − R4 = 0;
S5(C3) = R̄5 − R5 = 0;
S6(C ′

2v) = R̄6 − R6 = 0;
S7(D3) = R̄7 − R7 = 0;
S8(S3) = R̄8 − R8 = 0;
S9(C3v) = R̄9 − R9 = 0;
S10(D3h) = R̄10 − R10 = 0,

where 0s indicate the nonexistence of enantiomeric substitutional isomers of prismane
with the respective subgroups as their automorphism groups.

Finally, symmetry-specific indicators Tj for diastereomers are:

T1(C1) = R1 − S1 = 2R1 − R̄1 = 0;
T2(C

′
2) = R2 − S2 = 2R2 − R̄2 = 0;

T3(Cs) = R3 − S3 = 2R3 − R̄3 = y2z2;
T4(C

′
s) = R4 − S4 = 2R4 − R̄4 = y + y2 + y3 + y4 + y5

+(1 + 2y + 3y2 + 2y3 + y4)z2 + (1 + 2y + y2)z4;
T5(C3) = R5 − S5 = 2R5 − R̄5 = 0;
T6(C

′
2v) = R6 − S6 = 2R6 − R̄6 = y2 + y4 + (1 + y4)z2 + (2 + 2y2)z4 + z6;

T7(D3) = R7 − S7 = 2R7 − R̄7 = 0;
T8(S3) = R8 − S8 = 2R8 − R̄8 = 0;
T9(C3v) = R9 − S9 = 2R9 − R̄9 = y3;
T10(D3h) = R10 − S10 = 2R10 − R̄10 = 1 + y6 + z6.

The task could also be performed employing the full-size 10 × 10 matrices for
ζ - & μ-functions and all 10 conjugated subgroups of D3h . This allows avoidance of
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niceties of closed or nonclosed. To this end, we additionally supplement below such
matrices ζ & μ (prepared with the aid of Maple 14). Viz.:

ζ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 1 0 0 1
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 1 0 0 1 1
0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

μ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 −1 −1 2 1 1 1 −2
0 1 0 0 0 −1 −1 0 0 1
0 0 1 0 0 −1 0 −1 0 1
0 0 0 1 0 −1 0 0 −1 1
0 0 0 0 1 0 −1 −1 −1 2
0 0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A hand repetition of all results using the last two matrices checks.)

4 Discussion

In review, we have adapted the generalized cycle indices from [11] and replaced the
monomials in these indices with special generating functions, by analogy with similar
procedures described by Harary and Palmer [4]. Other parts of our approach have been
borrowed from the theory of the F-polynomials of graphs [5–8,26], the article [12] by
Rota and Smith containing the definition of a closed subgroup, our previous papers
concerning restrictions imposed on the enumeration of substitutional isomers [27–29],
and our experience of earlier applications of differential operators to the derivation of
graph polynomials [16–18,26]. The book [30] by Balaban is an additional interesting
collection of combinatorial problems arising in chemistry.

Finally, our techniques have been simply illustrated on a sample trigonal prismatic
skeleton. These techniques should be much more widely applicable.

In practice, for a complex problem dealing with combinatorial actions of a permu-
tation group A on several sets (X, Y, . . . , Z) (say, of vertices, edges, etc.) at once, one
and the same subgroup H ⊆ A may behave as a closed subgroup in actions on one set
but not as a closed subgroup on the others. For the overall situation, it is emphasized
that a subgroup H ⊆ A must in such a case be considered as a closed subgroup for
the entire problem whenever it is a closed subgroup in its actions on at least one of
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the mentioned subsets, say X . That is, H is not a closed subgroup if it simultaneously
acts as an nonclosed subgroup on all considered sets X, Y, . . . , Z . Disobeying this
condition leads to errors in calculations.

During the preparation of this text, we became aware of two papers [31,32] where
the symmetry-restricted Tutte polynomial was studied from a different viewpoint. A
hybrid of Pólya’s cycle index now with the chromatic polynomial was studied. This
evidently then falls in the same class of restricted enumerations as our present prob-
lem. Possibly, further new results might then result in combination with our present
formulation.
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